Salvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling.
نویسندگان
چکیده
BACKGROUND/AIMS Glomerular endothelium dysfunction leads to the progression of renal architectonic and functional abnormalities in early-stage diabetic nephropathy (DN). Advanced glycation end products (AGEs) and receptor for AGEs (RAGE) are proved to play important roles in diabetic nephropathy. This study investigated the role of Salvianolic acid A (SalA) on early-stage DN and its possible underlying mechanism. METHODS In vitro AGEs formation and breaking rate were measured to illustrate the effect of SalA on AGEs. Type 2 diabetic nephropathy rats were induced by high-fat diet and low-dose streptozocin (STZ). After eight-week treatment with SalA 1 mg/kg/day, 24h-urine protein, creatinine clearance was tested and renal structural injury was assessed by PAS and PASM staining. Primary glomerular endothelial cell permeability was evaluated after exposed to AGEs. AGEs-induced RhoA/ROCK and subsequently activated disarrange of cytoskeleton were assessed by western blot and immunofluorescence. RESULTS Biochemical assay and histological examination demonstrated that SalA markedly reduced endothelium loss and glomerular hyperfiltration, suppressed glomerular hypertrophy and mesangial matrix expansion, eventually reduced urinary albumin and ameliorated renal function. Further investigation suggested that SalA exerted its renoprotective effects through inhibiting AGE-RAGE signaling. It not only inhibited formation of AGEs and increased its breaking in vitro, but also reduced AGEs accumulation in vivo and downregulated RAGE expression. SalA restored glomerular endothelial permeability through suppressing AGEs-induced rearrangement of actin cytoskeleton via AGE-RAGE-RhoA/ ROCK pathway. Moreover, SalA attenuated oxidative stress induced by AGEs, subsequently alleviated inflammation and restored the disturbed autophagy in glomerular endothelial cell and diabetic rats via AGE-RAGE-Nox4 axis. CONCLUSION Our study indicated that SalA restored glomerular endothelial function and alleviated renal structural deterioration through inhibiting AGE-RAGE, thus effectively ameliorated early-stage diabetic nephropathy. SalA might be a promising therapeutic agent for the treatment of diabetic nephropathy.
منابع مشابه
NpgRJ_Nm_1667 1349..1358
Data providing direct evidence for a causative link between endothelial dysfunction, microvascular disease and diabetic end-organ damage are scarce. Here we show that activated protein C (APC) formation, which is regulated by endothelial thrombomodulin, is reduced in diabetic mice and causally linked to nephropathy. Thrombomodulin-dependent APC formation mediates cytoprotection in diabetic neph...
متن کاملRutin Prevents High Glucose-Induced Renal Glomerular Endothelial Hyperpermeability by Inhibiting the ROS/Rhoa/ROCK Signaling Pathway.
Diabetic nephropathy is a progressive kidney disease caused by damage to the capillaries in the glomeruli. Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy. Hyperglycemia-induced endothelial hyperpermeability is crucial to diabetic nephropathy. Rutin has beneficial effects on diabetic nephropathy, but the exact me...
متن کاملAlagebrium Reduces Glomerular Fibrogenesis and Inflammation Beyond Preventing RAGE Activation in Diabetic Apolipoprotein E Knockout Mice
Advanced glycation end products (AGEs) are important mediators of diabetic nephropathy that act through the receptor for AGEs (RAGE), as well as other mechanisms, to promote renal inflammation and glomerulosclerosis. The relative contribution of RAGE-dependent and RAGE-independent signaling pathways has not been previously studied in vivo. In this study, diabetic RAGE apoE double-knockout (KO) ...
متن کاملHyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission
Podocyte injury underlies many forms of glomerular diseases. Our previous study showed that hyperoside, a naturally occurring flavonoid, could decrease albuminuria at the early stage of diabetic nephropathy by ameliorating renal damage and podocyte injury. However, its protective mechanism against podocyte injury is unknown. A previous study demonstrated that hyperoside might inhibit amyloid β-...
متن کاملExpression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease.
Advanced glycation end products (AGE) contribute to diabetic tissue injury by two major mechanisms, i.e., the alteration of extracellular matrix architecture through nonenzymatic glycation, with formation of protein crosslinks, and the modulation of cellular functions through interactions with specific cell surface receptors, the best characterized of which is the receptor for AGE (RAGE). Recen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 44 6 شماره
صفحات -
تاریخ انتشار 2017